Слайд 9
Пример 3
Перечисленные уравнения не являются линейными:
§3х2+6х+7=0 (так как содержит переменную х во второй степени);
§2х2-5х3= 3 (объясни сам)
§х(х-3)=х5 (объясни сам)
Слайд 10
При решении уравнения вида ах = в возможны следующие три случая:
ах=в
Слайд 11
Пример 4
Решим уравнение 2 (3 х-1)=4 (х +3). Приведём это уравнение к стандартному виду. Раскроем скобки в обеих частях уравнения:2 3 х-2 1=4 х + 4 3 или
6 х - 2= 4 х + 12. Слагаемые, зависящие от х, перенесём в левую часть уравнения; числа – в правую, изменяя их знаки на противоположные:
6 х - 4х = 2+ 12. Приведём подобные слагаемые:
2х = 14 . В этом уравнении а=2 и в=14 . Уравнение имеет один корень х =
Слайд 12
Пример 5
Решим уравнение 2( 3 х-1)=4 ( х+3)- 14 +2х. Приводим это уравнение к стандартному виду: 6 х -2= 4 х + 12 – 14 + 2 х или
6 х - 4 х - 2х=2 + 12-14, или 0х=0 (где а=0, в=0 ) .
Очевидно, что при подстановке любого значения х получаем верное числовое равенство 0=0.
Поэтому любое число является корнем этого уравнения (уравнение имеет бесконечно много корней).
Слайд 13
Пример 6
Решим уравнение 2 (3 х-1)=4 ( х + 3)+2х
Приводим это уравнение к стандартному виду:
6 х - 2= 4 х+ 12+ 2 х или 6 х - 4 х-2 х= 2+12 или 0х=14 (где а=0, в=14 ).
Очевидно, что при подстановке любого значения х получаем неверное числовое равенство 0=14.
Поэтому уравнение корней не имеет.
Слайд 14
Реши сам!
а)5х-7=-2
Ответ:х=?;
б) 2(3х-1)+4=7х+5
Ответ:х=?
в)3х-(10+5х)=54
Ответ:х=?
г) 0,5(4-2х)=х-1,8
Ответ:х=?
Слайд 15
а)5x=-2+7
5x=5
х=1 Ответ:х=1
б) 6х-2+4=7х+5
6х-7х=5+2-4
-х=3
х=-3 Ответ:х=-3
в)3х-10-5х=54
-2х=54+10
-2х=64
х=64:(-2)
х=-32 Ответ:х=-32
г) 2-х=х-1,8
-х-х=-1,8-2
-2х=-3,8
х=1,9 Ответ: х=1,9
Слайд 16
Тестовая работа
Проверь свои знания ответив на вопросы предложенные компьютером.
Слайд 17
Самостоятельная работа
Реши уравнения и компьютер оценит твою работу.
Слайд 18