Слайд 33
Слайд 34
Цель – разработать модели, позволяющие исследовать сложное поведение мягких внутренних органов ( печень, почки, селезенка) под действием хирургических вмешательств и имплантаций. Математическое моделирование используется в сочетании с экспериментальными измерениями и созданием силиконовых моделей мягких тканей. Это позволяет получить объединенную информацию о реакциях мягких органов на медленную деформацию под действием терапии, давления и кручения, хирургические иссечения, а также поведении при имплантациях.
• Калифорнийский университет в Сан-Франциско
• Станфордский нац. вычислительный центтр
• Станфордский центр современных хирургич. техн.
• Западно-австралийский университет
• Университет г. Тюбинген, Германия
Слайд 35
Активный элемент сети – нейронный осциллятор;
Пространственная архитектура 3D сети имитирует колончатую структуру зрительной коры (VC);
«срабатывание» сети состоит в синхронизации ансамблей динамически связанных осцилляторов (кластеров); оно имитирует самоорганизованное коллективное поведение ориентационно-селективных (простых) клеток зрительной коры на низшей стадии обработки зрительной информации;
Сеть предварительно настраиватся параметрами предъявляемого зрительного изображения – массивом пар (яркостей пикселей и ориентаций элементарных сегментов изображения). При этом производится настройка как внутренней динамики сетевых осцилляторов, так и динамических сетевых связей.
Слайд 36
Изображение, подлежащее сегментации, задано в виде пиксельного разложения на согласованной с ним 2D решетке
В каждом узле решетки определены две характеристики изображения – яркость пикселя и ориентация элементарного сегмента
Осцилляторы сети расположены в узлах 3D решетки внутри параллелепипеда так, что каждому пикселю соответствует одна колонка осцилляторов
В каждом узле 3D решетки определены ориентации рецептивных полей
Полное число осцилляторов сети равно , где – размер пиксельного массива, а K – число осцилляторов в колонке.
Слайд 37
Подход к обработке смешанного акустического потока
Биологически обоснованная модель осцилляторной сети, доставляющая метод
выделения из смешенного акустического потока содержащихся в нем компонент, была
построена Вангом и Брауном (D.Wang, G.J.Brown, 1999).
Обработка потока состоит из двух этапов.